Lead-Free Piezoelectric Materials von Jing-Feng Li

Lead-Free Piezoelectric Materials
eBook
ISBN/EAN: 9783527817078
Sprache: Englisch
Umfang: 240 S., 8.74 MB
E-Book
Format: PDF
DRM: Adobe DRM
€ 124,99
(inklusive MwSt.)
Download
E-Book kaufen
Auf Wunschliste
<p><b>Provides in-depth knowledge on lead-free piezoelectrics - for state-of-the-art, environmentally friendly electrical and electronic devices!</b></p><p>Lead zirconate titanate ceramics have been market-dominating due to their excellent properties and flexibility in terms of compositional modifications. Driven by the Restriction of Hazardous Substances Directive, there is a growing concern on the toxicity of lead. Therefore, numerous research efforts were devoted to lead-free piezoelectrics from the beginning of this century. Great progress has been made in the development of high-performance lead-free piezoelectric ceramics which are already used, e.g., for power electronics applications.</p><p><i>Lead-Free Piezoelectric Materials</i> provides an in-depth overview of principles, material systems, and applications of lead-free piezoelectric materials. It starts with the fundamentals of piezoelectricity and lead-free piezoelectrics. Then it discusses four representative lead-free piezoelectric material systems from background introduction to crystal structures and properties. Finally, it presents several applications of lead-free piezoelectrics including piezoelectric actuators, and transducers. The challenges for promoting applications will also be discussed.</p><ul><li><b>Highly attractive:</b> Lead-free piezoelectrics address the growing concerns on exclusion of hazardous substances used in electrical and electronic devices in order to protect human health and the environment</li><li><b>Thorough overview:</b> Covers fundamentals, different classes of materials, processing and applications</li><li><b>Unique:</b> discusses fundamentals and recent advancements in the field of lead-free piezoelectrics</li></ul><p><i>Lead-Free Piezoelectric Materials</i> is of high interest for material scientists, electrical and chemical engineers, solid state chemists and physicists in academia and industry.</p>
Jing-Feng Li is Distinguished Professor in the School of Materials Science and Engineering at Tsinghua University, China. He obtained his PhD degree from Tohoku University, Japan. His research focuses on piezoelectric, thermoelectric materials and devices. He has published two Chinese books and more than 490 peer-reviewed papers and holds 34 patents. He received several awards, including the young researcher award from the Japan Institute of Metals, an outstanding young scientist grant from Natural Science Foundation of China and the Changjiang professorship from The Ministry of Education of China.
About the Author ixForeword by ProfessorLongtu Li xiForeword by ProfessorJürgen Rödel xiiiPreface xv1 Fundamentals of Piezoelectricity11.1 Introduction 11.2 Piezoelectric Effects and Related Equations 21.3 Ferroelectric Properties and Its Contribution to Piezoelectricity 31.4 Piezoelectric Parameters 71.4.1 Piezoelectric Constants 71.4.1.1 Piezoelectric Charge (Strain) Constant 71.4.1.2 Piezoelectric Voltage Coefficient (G-constant) 81.4.2 Piezoelectric Coupling Coefficient 81.4.3 Mechanical Quality Factor 91.5 Issues for Measuring Piezoelectric Properties 101.5.1 Measurement of Direct Piezoelectric Coefficient Using the Berlincourt Method 101.5.2 Measurement of Converse Piezoelectric Coefficient by Laser Interferometer 121.5.3 Resonance and Anti-resonance Method 14References 162 High-Performance Lead-Free Piezoelectrics192.1 Introduction 192.2 BaTiO3 212.3 (K,Na)NbO3 232.4 (Bi1/2Na1/2)TiO3 252.5 BiFeO3 272.6 Summary 28References 283 (K,Na)NbO3System333.1 Introduction of (K,Na)NbO3333.1.1 History of (K,Na)NbO3333.1.2 Crystal Structure and Phase Diagram 333.1.3 Current Development of KNN-Based Materials 363.2 Synthesis 373.2.1 Calcination 373.2.2 Sintering 383.2.2.1 Normal Sintering 393.2.2.2 Hot Pressing, Spark Plasma Sintering, and Microwave Sintering 413.2.3 Texturing 433.3 Approaches to Piezoelectricity Enhancement 443.3.1 Phase Engineering 453.3.1.1 OT Phase Boundary 453.3.1.2 RT Phase Boundary 473.3.2 Thermal Stability 493.3.3 Multiscale Heterogeneity 533.3.4 Poling Techniques 573.4 Fatigue and Mechanical Properties 573.4.1 Fatigue 573.4.2 Mechanical Properties 603.5 KNN Thin Films 623.5.1 SolGel-Processed Films 633.5.2 KNN Films Prepared by Physical Methods 653.6 Single Crystals 673.7 Summary 68References 694 (Bi1/2Na1/2)TiO3System854.1 Introduction of BNT System 854.2 Extensive Research on Phase Diagram of (Bi1/2Na1/2)TiO3BaTiO3 System 864.2.1 Relaxor or Antiferroelectric? 864.2.2 MPB and Complex Phase Structure 904.3 High Converse Piezoelectricity 934.3.1 Electric-Field-Induced Phase Transition 954.3.2 Ergodic and Nonergodic Relaxor 984.3.3 Modulation of Depolarization Temperature 1034.3.3.1 Compositional Modification Approach 1034.3.3.2 Composite Approach 1044.3.3.3 Stress Approach 1054.4 Thin Films 1064.5 Single Crystals 1094.6 High-Power Application 1104.7 Summary and Outlook 112References 1125 BaTiO3 System1235.1 Brief Introduction of History 1235.2 BaTiO3-Based Ceramics and Single Crystals 1255.2.1 Ceramics 1255.2.2 Single Crystal 1285.3 BaTiO3-Based Solid Solution Ceramics 1295.3.1 (Ba,Ca)(Ti,Zr)O3 1305.3.2 (Ba,Ca)(Ti,Sn)O3 1325.3.3 (Ba,Ca)(Ti,Hf)O3 1345.4 Piezoelectricity Enhancement 1355.4.1 Phase Engineering 1355.4.2 Domain Engineering 1375.4.3 Texturing 1395.5 Key Issues of Sintering Processes 1395.5.1 Li-containing Sintering Additives 1405.5.2 Glass Compositions 1415.6 Mechanical Property 1425.7 Summary and Outlook 144References 1456 BiFeO3 System1576.1 Introduction 1576.2 Brief Introduction to Multiferroic Materials 1576.3 Multiferroicity of BiFeO3 1596.3.1 Ferroelectricity 1596.3.2 Antiferromagnetism and Weak Ferromagnetism 1596.3.3 Magnetoelectric Coupling 1616.3.3.1 Antiferromagnetic Switching on Electric Field 1616.3.3.2 Ferroelectricity on Magnetic Field 1626.4 Phase Diagram of BiFeO3 1636.4.1 High Curie Temperature and Processing Issues 1636.4.2 Influence of Pressure on Phase Diagram 1656.4.3 Thin Film and Strain Effect on Phase Structure 1666.5 Dielectric Permittivity, Electrical Conductivity, and Domain Wall Conductivity of BiFeO3 1696.5.1 Dielectric Permittivity 1696.5.2 Electrical Conductivity and Defects 1706.5.3 Domain Wall Conductivity 1726.6 Ion Substitutions in BiFeO3 1746.6.1 On Ferroelectricity (Pr) and Piezoelectricity (d33) 1756.6.2 On Phase Transformation 1776.6.3 On Magnetic Properties 1776.7 BiFeO3-Based Solid Solutions 1786.7.1 BiFeO3BaTiO3 1786.7.2 Other Solid Solutions 1806.8 Application of BiFeO3: Potentials and Status 1806.8.1 Ferroelectricity and Electronics 1816.8.2 Magnetoelectric Coupling and Spintronics 1826.8.3 Domain Wall Based Electronics 1846.9 Summary 184References 1857 Applications1977.1 Introduction 1977.2 Representative Applications of Lead-Free Piezoelectric Ceramics 1997.2.1 Piezoelectric Multilayer Actuators 1997.2.2 KNN-Based Actuation Structure in Inkjet Printhead 2017.2.3 Ultrasonic Transducers 2027.2.4 KNN-Based Knocking Sensors 2057.3 Other Potential Applications 2067.3.1 Energy Harvesting 2067.3.2 High-Frequency Medical Imaging Transducers Using 13 Composites 2087.3.3 High-Temperature Piezoelectrics and Applications 2107.4 Summary and Outlooks 210References 211Index 217

„E-Book“ steht für digitales Buch. Um diese Art von Büchern lesen zu können wird entweder eine spezielle Software für Computer, Tablets und Smartphones oder ein E-Book Reader benötigt. Da viele verschiedene Formate (Dateien) für E-Books existieren, gilt es dabei, einiges zu beachten.

Von uns werden digitale Bücher in drei Formaten ausgeliefert. Die Formate sind EPUB mit DRM (Digital Rights Management), EPUB ohne DRM und PDF. Bei den Formaten PDF und EPUB ohne DRM müssen Sie lediglich prüfen, ob Ihr E-Book Reader kompatibel ist. Wenn ein Format mit DRM genutzt wird, besteht zusätzlich die Notwendigkeit, dass Sie einen kostenlosen Adobe® Digital Editions Account besitzen. Wenn Sie ein E-Book, das Adobe® Digital Editions benötigt herunterladen, erhalten Sie eine ASCM-Datei, die zu Digital Editions hinzugefügt und mit Ihrem Account verknüpft werden muss. Einige E-Book Reader (zum Beispiel PocketBook Touch) unterstützen auch das direkte Eingeben der Login-Daten des Adobe Accounts – somit können diese ASCM-Dateien direkt auf das betreffende Gerät kopiert werden.

Da E-Books nur für eine begrenzte Zeit – in der Regel 6 Monate – herunterladbar sind, sollten Sie stets eine Sicherheitskopie auf einem Dauerspeicher (Festplatte, USB-Stick oder CD) vorsehen. Auch ist die Menge der Downloads auf maximal 5 begrenzt.

Funktionsweise E-Books.